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Introduction Abstract

Abstract

The concept of one event happening before another in a distributed system is examined,
and is shown to define a partial ordering of the events. A distributed algorithm is given
for synchronizing a system of logical clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a method for solving synchronization
problems. The algorithm is then specialized for synchronizing physical clocks, and a
bound is derived on how far out of synchrony the clocks can become.

Key Words and Phrases: distributed systems, computer networks, clock synchronization,
multiprocess systems
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Introduction Humans and Systems View Time Differently

How Humans View Time

We say that something happened at 3:15 if it occurred:

• after our clock read 3:15 and
• before it read 3:16

For example, in an airline reservation system we specify that a request for a reservation
should be granted if it is made before the flight is filled.

The concept of the temporal ordering of events pervades our thinking about systems.
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Introduction Humans and Systems View Time Differently

Machines Think Different™

Distributed Systems 101:
• they consist of a collection of distinct processes which are spatially separated,

and which communicate with one another by exchanging messages

• e.g., network of interconnected computers, even a single computer (central control
unit, memory units, I/O channels are separate processes)

A system is distributed if the message transmission delay is not negligible
compared to the time between events in a single process.

So what’s different about them?
• sometimes impossible to say one of two events occurred first in a distributed system
• relation “happened before” is therefore only a partial ordering of the events in the

system
Problems often arise because people are not fully aware of this fact and its implications.
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The Partial Ordering Intro

Intro to Partial Ordering

Recap: Most people would probably say that an event a happened before an event b if a
happened at an earlier time than b. However, if a system is to meet a specification
correctly, then that specification must be given in terms of events observable within the
system.

Let’s say the spec is in terms of physical time and the system contains real clocks. It’s
impossible to guarantee clock accuracy. Uh-oh!

No worries! Lamport defined the “happened before” relation without using physical clocks.
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The Partial Ordering Definition

Definition

The “happened before” relation, denoted by “→”, on the set of events of a system is the
smallest relation satisfying the following three conditions:

1 If a and b are events in the same process, and a comes before b, then a → b.
2 If a is the sending of a message by one process and b is the receipt of the same

message by another process, then a → b.
3 If a → b and b → c then a → c. Two distinct events a and b are said to be concurrent

if a ̸→ b and b ̸→ a.

Another way to think about concurrency: a → b means it’s possible for a to causally
affect b. Concurrent events don’t causally affect each other.
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The Partial Ordering Definition

Figure 1

Space-time diagram
• horizontal direction

represents space and
the vertical direction
represents time—later
times are higher

• dots denote events
• vertical lines denote

processes
• wavy lines denote

messages
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Logical Clocks Intro

Intro to Logical Clocks

Time’s up for your perception of clocks! Lamport defines it differently. He:

• defines a clock Ci for each process Pi to be a function which assigns a number Ci⟨a⟩
to any event a in that process

• represents the entire system of clocks by the function C which assigns to any event b
the number C⟨b⟩, where C⟨b⟩ = Cj⟨b⟩ if b is an event in process Pj

What makes Ci “logical” rather than “physical” clocks is that we make no assumption
about the relation of the numbers Ci⟨a⟩ to physical time.

What about correctness? Remember: no physical time! The strongest reasonable
condition is that if an event a occurs before another event b, then a should happen at an
earlier time than b.
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Time’s up for your perception of clocks! Lamport defines it differently. He:
• defines a clock Ci for each process Pi to be a function which assigns a number Ci⟨a⟩

to any event a in that process
• represents the entire system of clocks by the function C which assigns to any event b

the number C⟨b⟩, where C⟨b⟩ = Cj⟨b⟩ if b is an event in process Pj

What makes Ci “logical” rather than “physical” clocks is that we make no assumption
about the relation of the numbers Ci⟨a⟩ to physical time.

What about correctness? Remember: no physical time! The strongest reasonable
condition is that if an event a occurs before another event b, then a should happen at an
earlier time than b.
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Logical Clocks Clock Condition

Clock Condition

Recap For any events a, b: if a → b then C⟨a⟩ < C⟨b⟩.

Oh, this is the clock condition.
But there’s more…

Note that we can’t expect the converse condition, i.e., if C⟨a⟩ < C⟨b⟩ then a → b, to hold
as well because that would imply that any two events must occur at the time.

The following two conditions must hold to satisfy the Clock Condition:
C1 If a and b are events in process Pi, and a comes before b, then Ci⟨a⟩ < Ci⟨b⟩
C2 If a is the sending of a message by process Pi and b is the receipt of that message by

process Pj, then Ci⟨a⟩ < Cj⟨b⟩
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Logical Clocks Clock Condition

Figure 2

Space-time diagram
• dashed “tick line”

through all the
like-numbered ticks of
the different processes.

• consider the tick lines
to be the time
coordinate lines of
some Cartesian
coordinate system on
space-time
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Logical Clocks Clock Condition

Figure 3

Space-time diagram
• Same as Figure 2

except we
straightened the
coordinate lines

• Which figure is a
better representation?
No right answer due
to lack of physical
time concept in
system.
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Logical Clocks Implementation Rule

Implementation Rule

Let’s make things less abstract! Assume now that processes are algorithms, and the events
represent certain actions during their execution. How do we introduce these clocks we’ve
been talking about into processes?

Note: Process Pi’s clock is represented by a register Ci, so that Ci⟨a⟩ is the value
contained by Ci during the event a. The value of Ci will change between events, so
changing Ci does not itself constitute an event.

To satisfy the Clock Condition, we introduce implementation rules IR1 and IR2, where
condition C1 is satisfied by the process obeying IR1 and condition C2 is satisfied by the
process obeying IR2:
IR1 Each process Pi increments Ci between any two successive events.
IR2 (a) If event a is the sending of a message m by process Pi, then the message m

contains a timestamp Tm = Ci⟨a⟩. (b) Upon receiving a message m, process Pj sets
Cj greater than or equal to its present value and greater than Tm.
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contained by Ci during the event a. The value of Ci will change between events, so
changing Ci does not itself constitute an event.

To satisfy the Clock Condition, we introduce implementation rules IR1 and IR2, where
condition C1 is satisfied by the process obeying IR1 and condition C2 is satisfied by the
process obeying IR2:
IR1 Each process Pi increments Ci between any two successive events.

IR2 (a) If event a is the sending of a message m by process Pi, then the message m
contains a timestamp Tm = Ci⟨a⟩. (b) Upon receiving a message m, process Pj sets
Cj greater than or equal to its present value and greater than Tm.

Ritwik Takkar CS6410: Advanced Systems October 18, 2022 15/38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logical Clocks Implementation Rule

Implementation Rule

Let’s make things less abstract! Assume now that processes are algorithms, and the events
represent certain actions during their execution. How do we introduce these clocks we’ve
been talking about into processes?

Note: Process Pi’s clock is represented by a register Ci, so that Ci⟨a⟩ is the value
contained by Ci during the event a. The value of Ci will change between events, so
changing Ci does not itself constitute an event.

To satisfy the Clock Condition, we introduce implementation rules IR1 and IR2, where
condition C1 is satisfied by the process obeying IR1 and condition C2 is satisfied by the
process obeying IR2:
IR1 Each process Pi increments Ci between any two successive events.
IR2 (a) If event a is the sending of a message m by process Pi, then the message m

contains a timestamp Tm = Ci⟨a⟩. (b) Upon receiving a message m, process Pj sets
Cj greater than or equal to its present value and greater than Tm.

Ritwik Takkar CS6410: Advanced Systems October 18, 2022 15/38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ordering the Events Totally

1 Introduction

2 The Partial Ordering

3 Logical Clocks

4 Ordering the Events Totally
Informal Method
Lamport-Style
Motivation
Resource Scheduling Algorithm

5 Anomalous Behavior

6 Physical Clocks

7 Conclusion

8 Discussion
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Ordering the Events Totally Informal Method

But How? Informally, Like So

• The system of clocks must satisfy the Clock Condition

• Order the events by the times at which they occur
• Tiebreaker: use any arbitrary total ordering ≺ of the processes
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Ordering the Events Totally Informal Method

But How? Informally, Like So
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Ordering the Events Totally Lamport-Style

But How? Now, Lamport-Style

We define a relation ⇒ as follows: if a is an event in process Pi and b is an event in
process Pj, then a ⇒ b if and only if either:
(i) Ci⟨a⟩ < Cj⟨b⟩, or
(ii) Ci⟨a⟩ = Cj⟨b⟩ and Pi ≺ Pj

♪ In other words, please be true ♪, in other words, the relation ⇒ is a way of completing the
“happened before” partial ordering to a total ordering.

• Given any total ordering relation ⇒ which extends →, there is a system of clocks
satisfying the Clock Condition which yields that relation. It is only the partial
ordering → which is uniquely determined by the system of events
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Ordering the Events Totally Motivation

Example: Mutual Exclusion Problem

Why bother totally ordering events in a distributed system? Why do anything ever at all?

Mutual exclusion problem: in a system consisting of many processes and one resource, we
wish to find an algorithm for granting the resource to a process which satisfies the
following three conditions:

1 A process which has been granted the resource must release it before it can be
granted to another process.

2 Different requests for the resource must be granted in the order in which they are
made.

3 If every process which is granted the resource eventually releases it, then every
request is eventually granted.

Assume that the resource is initially granted to exactly one process.
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #1 (out of 5)

1. To request the resource, process Pi sends the message Tm : Pi requests resource to
every other process, and puts that message on its request queue, where Tm is the
timestamp of the message.

Source: Nicole Caruso, Cornell CS
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Algorithm: Rule #1 (out of 5)

1. To request the resource, process Pi sends the message Tm : Pi requests resource to
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #2 (out of 5)

2. When process Pj receives the message Tm : Pi requests resource, it places it on its
request queue and sends a (timestamped) acknowledgment message to Pi.

Source: Nicole Caruso, Cornell CS
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #2 (out of 5)

2. When process Pj receives the message Tm : Pi requests resource, it places it on its
request queue and sends a (timestamped) acknowledgment message to Pi.
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #3 (out of 5)

3. To release the resource, process Pi removes any Tm : Pi requests resource message
from its request queue and sends a (timestamped) Pi releases resource message to
every other process.

Source: Nicole Caruso, Cornell CS
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #3 (out of 5)

3. To release the resource, process Pi removes any Tm : Pi requests resource message
from its request queue and sends a (timestamped) Pi releases resource message to
every other process.

Source: Nicole Caruso, Cornell CS
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #4 (out of 5)

4. When process Pj receives a Pi releases resource message, it removes any Tm : Pi
requests resource message from its request queue.

Source: Nicole Caruso, Cornell CS
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #4 (out of 5)

4. When process Pj receives a Pi releases resource message, it removes any Tm : Pi
requests resource message from its request queue.

Source: Nicole Caruso, Cornell CS
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Ordering the Events Totally Resource Scheduling Algorithm

Algorithm: Rule #5 (out of 5)

5. Process Pi is granted the resource when the following two conditions are satisfied:
i. There is a Tm : Pi requests resource message in its request queue which is ordered before

any other request in its queue by the relation ⇒. (To define the relation “⇒” for
messages, we identify a message with the event of sending it.)

ii. Pi has received a message from every other process timestamped later than Tm.

Ritwik Takkar CS6410: Advanced Systems October 18, 2022 24/38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Anomalous Behavior

1 Introduction

2 The Partial Ordering

3 Logical Clocks

4 Ordering the Events Totally

5 Anomalous Behavior
Problem
Solution

6 Physical Clocks

7 Conclusion

8 Discussion

Ritwik Takkar CS6410: Advanced Systems October 18, 2022 25/38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Anomalous Behavior Problem

Scenario

Recap: resource scheduling algorithm orders request in accordance with total ordering ⇒.

Total ordering still permits the following type of anomalous behavior:
• 2 computers in a network can try to obtain a shared resource at the same time

causing a conflict. This can happen despite the fact that a request a may have been
made on computer A before a request b may have been made on computer B because
b comes before a on computer B.
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Anomalous Behavior Solution

Choice 1: Make Users Responsible

Guesses?

Alex making request a receives timestamp Ta and broadcasts it to his friend Bob before
he makes request b so that they ensure Tb < Ta

Thoughts?
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Anomalous Behavior Solution

Choice 2: Strong Clock Condition

Construct a system of clocks which satisfies the following condition:

Strong Clock Condition For any events a, b in S: if a ↪→ b then C⟨a⟩ < C⟨b⟩.
Note: S refers to the set of all system events

One of the mysteries of the universe is that it is possible to construct a system of physical
clocks which, running quite independently of one another, will satisfy the Strong Clock
Condition.
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Physical Clocks
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Physical Clocks Physical Clock Conditions

Physical Clock Conditions

Let’s introduce a physical time coordinate t! Let Ci(t) denote the reading of the clock Ci
at physical time t and dCi(t)

dt represent the rate at which the clock runs at t. In order for Ci

to be a true physical clock, it must run at the correct rate, i.e., dCi(t)
dt ≈ 1.

More precisely,
PC1 There exists a constant κ « 1 such that for all i : |dCi(t)

dt - 1| < κ, where κ ≤ 10−6 for
quartz clocks. (Clocks individually run at approximately the correct rate) “drift”
But this is not enough…

PC2 For all i, j : |Ci(t)− Cj(t)| < ε. (Clocks must be synchronized so that Ci(t) ≈ Cj(t) for
all i, j, and t) “skew”
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Physical Clocks Specialized Rules IR1 and IR2

Important Physical Clock Concepts

Keep in mind the following
• Clocks are never perfectly accurate, a term that refers to “truth”
• Any clock will also drift over time, causing skew between two clocks
• Accuracy relates to skew relative to a perfectly truthful clock
• Precision relates to skew between pairs of correct clocks in the system.

Ken Birman. (Lecture Notes) CS5412 / Time-Related Content (Enrichment/Review).
https://www.cs.cornell.edu/courses/cs5412/2022fa/videos/lecture-9-enrichment.mp4. [Online; accessed
09-October-2022]. 2022
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Physical Clocks Specialized Rules IR1 and IR2

Specialized Rules IR1′ and IR2′

I won’t cover IR1′ and IR2′ in the same level of detail as the paper because doing so requires a decent bit of
math, which I think is beyond the scope of this presentation…

Recall PC2: For all i, j : |Ci(t)− Cj(t)| < ε. (Clocks must be synchronized so that
Ci(t) ≈ Cj(t) for all i, j, and t) “skew”

• Purpose of IR1′ and IR2′: to guarantee PC2 is satisfied by the system of physical
clocks

• IR1′ states clock readings change with physical time
• IR2′ states how clocks synchronize with each other. Pj’s clock is set to max(current

time, time at which message is received + expected minimum transmission delay)
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Physical Clocks Theorem

Theorem

What does it do?
• States IR1′ and IR2′ establish PC2

• Bounds the time it takes for clocks to sync up at system startup time

Skipping detail due to time constraints. Also, very math intensive, so good luck! PS: Even
Lamport thinks the proof of this theorem is difficult.
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Conclusion Conclusion

Conclusion

• Concept of “happening before” defines an invariant partial ordering of the events in a
distributed multiprocess system

• We discussed an algorithm for extending that partial ordering to a somewhat
arbitrary total ordering

• Anomalous behavior arises when total ordering defined by algorithm disagrees with
ordering perceived by system’s users

• Using properly synchronized clocks can prevent this

• In a distributed system, it is important to realize that the order in which events occur
is only a partial ordering
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Discussion Discussion Points

Discussion Points

• True or false: a network of computers that communicate about events in a shared
process without transmission delay constitute a distributed system

False! A system is distributed if the message transmission delay is not negligible
compared to the time between events in a single process

• Fill in the blank: There is a order in which an event e1 precedes an event e2 iff
e1 can causally affect e2. partial

• True or false: Any clock will skew over time, causing drift between two clocks
False! Any clock will drift over time, causing skew between two clocks

• Because we know the timestamp of event a to be less than the timestamp of event b,
we can safely say that event a event b.
Trick question! We can’t say anything based on just the timestamps of these events.

• Discuss: What is the main limitation of logical time in relation to processes within a
system?

• Discuss: Why not just use a centralized scheduler to deal with the mutex problem?
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e1 can causally affect e2. partial
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we can safely say that event a event b.
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Discussion Questions

Questions?

Thank you for attending
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